

GiNet: Integrating Sequential and Context-Aware Learning for Battery Capacity Prediction

IEEE VTC Spring 2025

Sara Sameer¹(Presenter), Wei Zhang¹, Xin Lou¹, Qingyu Yan² , Terence Goh ³ , Yulin Gao ³

- Singapore Institute of Technology
- Nanyang Technological University

Code

3 ST Engineering

Paper

SingaporeTech.edu.sg

Table of Content

Why State of Charge is Crucial?
why state of charge is crucial!
Research motivation for Transformers Model
GINet
Informers – Embedding
Informers – Architecture
Experimental Setup
Results
Sensitivity Analysis – Encoder Decoder Layers
Why Prob Sparse Attention?
Directions for Future Research

Why Batteries Matter More Than Ever?

- Headline Highlight: Existing EV Batteries may last upto 40% longer than expected Standford News, 2024
- Electric Vehicles, Smartphones, Solar energy all depend on battery reliability.
- Lower battery replacement = lower total cost of ownership.
- Battery estimation models must adapt to real-world variations.
- Need models that understands the real-time driving and battery degradation.

Why State of Charge is Crucial?

- State of Charge (SoC) estimation is crucial for:
 - Optimizing battery performance
 - Preventing overcharge or deep discharge,
 - Maximizing the battery's life.
- Conventional approaches like Support Vector Regressors (SVR), Kalman filters and LSTM suffer from inability to capture temporal patterns and dependencies in high dimensional time-series data.

Attribute	Description
Battery Type	2.9Ah Panasonic 18650PF cell
Charging Profile	Cycled at 1C rate at 25degC
Discharging Temperatures	25degC, 10degC, 0degC, -10degC, and -20degC
Drive Cycles Profiles	Cycle 1, Cycle 2, Cycle 3, Cycle 4, US06, HWFET, UDDS, LA92, NN
Features	Current(I), Voltage(V), Temperature(T)

Panasonic 18650PF Li-ion Battery Data for SoC estimation

Research motivation for Transformers Model

Transformers:

- Capture long-range dependencies
- No need for recurrent layers
- Suited for complex temporal patterns

Informer: Efficient Transformer Variant

- Handles long sequences
- Uses ProbSparse attention
- Optimized for high-dimensional time series

Encoder:			N		
Inputs	1x3 Conv1d	Embedding $(d = 512)$			
ProhSparse	Multi-head ProbSparse Attention ($h = 16, d = 32$)				
Self_attention	Add, LayerNorm, Dropout $(p = 0.1)$				
Block	Pos-wise FFN ($d_{inner} = 2048$), GELU				
DIOCK	Add, LayerNorm, Dropout $(p = 0.1)$				
Distilling	1x3 conv1d, ELU				
Distining	Max pooling (stride $= 2$)				
Decoder:			N		
Inputs	1x3 Conv1d	Embedding ($d = 512$)			
Masked PSB	add Mask on Attention Block				
~	Multi-head	Attention $(h = 8, d = 64)$	2		
Self-attention	Add, LayerNorm, Dropout $(p = 0.1)$				
Block	Pos-wise FFN ($d_{inner} = 2048$), GELU				
-	Add, LayerNorm, Dropout $(p = 0.1)$				
Final:					
Outputs	F	$CN (d = d_{out})$			

Informers – Embedding

$$X = \{x_1, x_2, \dots, x_n\}, \quad x_t = [\text{Temperature}_t, \text{Current}_t, \text{Voltage}_t]$$
 (1)
 $E_t = f_{\text{embed}}(x_t) + f_{\text{temporal}}(t) + f_{\text{spatial}}(x_t)$ (2)
 $\mathbf{X}_{\text{value}} = \text{Conv1D}(\mathbf{X}_{\text{input}})$ $\mathbf{X}_{\text{temporal}} = \mathbf{E}_{\text{hour}} + \mathbf{E}_{\text{weekday}} + \mathbf{E}_{\text{day}} + \mathbf{E}_{\text{month}}$
 $PE(t, 2i) = \sin\left(\frac{t}{10000^{2i/d_{\text{model}}}}\right)$
 $PE(t, 2i + 1) = \cos\left(\frac{t}{10000^{2i/d_{\text{model}}}}\right)$

Embeddings:

- Value Embedding (Token Embedding): Converts I, V and T into higher dimensional data.
 - Positional Embedding: It encodes the position of each time step in the sequence.
 - 3. Temporal Embedding: It encodes the time stamp into time aware encoding.

Informers - Architecture

$$Q = EW_Q, \quad K = EW_K, \quad V = EW_V \tag{3}$$

$$Q' = \operatorname{Top}_u(\|Q\|) \tag{5}$$

Supplement of the second secon

- These define how much attention each input should give to others

Instead of computing attention for all key-value pairs, ProbSparse Attention samples only the most relevant ones, based on probability
 Making attention faster and lighter for long sequences

Instead of using a large model during inference, distillation trains a student model to mimic the behavior of a powerful teacher model

- Preserving accuracy while reducing computational cost

GINet

Work on SoC Estimation

GINET: GRU-enhanced Informer for battery capacity prediction

Feature Fusion: Combines sequential (GRU) & contextual (Informer) insights

Optimized Architecture: Tailored integration for battery monitoring data

Performance:

- MAE: 0.11 (high accuracy)
- Improvement: +76% (vs. GRU), +27% (vs. Informer)

Impact: Enhanced SoC prediction efficiency

Experimental Setup

Results

Forecast Horizon		25			10		
Innut Length		200	100	10	200	100	10
	RMSE ↓	0.30	0.31	0.43	0.29	0.30	0.42
LSTM	MAE 🗸	0.26	0.27	0.36	0.26	0.27	0.33
	RMSE ↓	0.27	0.29	0.30	0.26	0.28	0.29
GRU	MAE 🗸	0.24	0.25	0.27	0.24	0.25	0.25
	RMSE ↓	0.20	0.21	0.22	0.19	0.21	0.21
Informers	MAE 🗸	0.18	0.18	0.20	0.17	0.17	0.18
GINET	RMSE ↓	0.15	0.18	0.22	0.14	0.16	0.17
	MAE 🗸	0.13	0.15	0.19	0.11	0.14	0.15

Sensitivity Analysis – Encoder Decoder Layers

Directions for Future Research

- Integrate physical models to fuse domain knowledge
- Quantify prediction confidence with uncertainty aware forecasting.
- Optimize the model for on device SoC estimation.

Any Questions? Thank You!