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Why Batteries Matter More Than Ever?

Headline Highlight: Existing EV Batteries may last upto 40% longer than expected  - Standford News, 2024 

▪ Electric Vehicles, Smartphones, Solar energy – all depend on battery reliability.

▪ Lower battery replacement = lower total cost of ownership.

▪ Battery estimation models must adapt to real-world variations.

▪ Need models that understands the real-time driving and battery degradation.



Why State of Charge is Crucial?

• State of Charge (SoC) estimation is crucial for:

• Optimizing battery performance

• Preventing overcharge or deep discharge, 

• Maximizing the battery’s life. 

• Conventional approaches like Support Vector Regressors (SVR), Kalman filters and LSTM suffer from inability to 
capture temporal patterns and dependencies in high dimensional time-series data.

Attribute Description

Battery Type 2.9Ah Panasonic 18650PF cell

Charging Profile Cycled at 1C rate at 25degC

Discharging Temperatures 25degC, 10degC, 0degC, -10degC, and -20degC

Drive Cycles Profiles Cycle 1, Cycle 2, Cycle 3, Cycle 4, US06, HWFET, UDDS, LA92, NN

Features Current(I), Voltage(V), Temperature(T)

Panasonic 18650PF Li-ion Battery Data for SoC estimation



Research motivation for Transformers Model

Transformers:
• Capture long-range dependencies
• No need for recurrent layers
• Suited for complex temporal patterns

Informer: Efficient Transformer Variant
• Handles long sequences
• Uses ProbSparse attention
• Optimized for high-dimensional time series



Informers – Embedding 

(1)

(2)

Embeddings:

1. Value Embedding (Token 
Embedding): Converts I, V and 
T into higher dimensional 
data.

2. Positional Embedding: It 
encodes the position of each 
time step in the sequence.

3. Temporal Embedding: It 
encodes the time stamp into 
time aware encoding.



Informers - Architecture

(3)

OR (4)

(5)

 Input embeddings are transformed into queries (Q) and keys (K) using learned weights
          - These define how much attention each input should give to others

 Instead of computing attention for all key-value pairs, ProbSparse Attention samples only the most relevant ones, based on probability
           - Making attention faster and lighter for long sequences
 

 Instead of using a large model during inference, distillation trains a student model to mimic the behavior of a powerful teacher model

        - Preserving accuracy while reducing computational cost 



GINet



Experimental Setup

Training Data
-10C to 25C

Profiles: Mix 1-4,US06

Testing Data
-10C to 25C

Profiles: LA92, NN

Test Network

Informers Network

Compare 
Performance
RMSE, MAE

d_model n_heads e_layers d_layers Drop out Learning  Rate Epoch Batch Size

512 8 2 1 0.1 0.0001 20 32

Training Data: 130547
Validation: 32637

Test: 81680



Results 

Forecast Horizon 25 10

Input Length 200 100 10 200 100 10

LSTM

RMSE ↓ 0.30 0.31 0.43 0.29 0.30 0.42

MAE ↓ 0.26 0.27 0.36 0.26 0.27 0.33

GRU

RMSE ↓ 0.27 0.29 0.30 0.26 0.28 0.29

MAE ↓ 0.24 0.25 0.27 0.24 0.25 0.25

Informers

RMSE ↓ 0.20 0.21 0.22 0.19 0.21 0.21

MAE ↓ 0.18 0.18 0.20 0.17 0.17 0.18

GINET
RMSE ↓ 0.15 0.18 0.22 0.14 0.16 0.17

MAE ↓ 0.13 0.15 0.19 0.11 0.14 0.15



Sensitivity Analysis – Encoder Decoder Layers



Directions for Future Research

▪ Integrate physical models to fuse domain knowledge

▪ Quantify prediction confidence with uncertainty aware forecasting.

▪ Optimize the model for on device SoC estimation.



Any Questions? 
Thank You!
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